Variational Bayesian Model Selection for GMM-Speaker Verification Using Universal Background Model
نویسندگان
چکیده
In this paper we propose to use Variational Bayesian Analysis (VBA) instead of Maximum Likelihood (ML) estimation for Universal Background Model (UBM) building in GMM text independent speaker verification systems. Using VBA estimation solves the problem of the optimal choice of the UBM mixture dimensionality for the training data set, as well as the problem of noise Gaussians which are typical for ML estimation. Experiments using the NIST 2006 and 2008 SRE datasets (cellular channels only) demonstrate superior efficiency of baseline verification systems with a UBM trained using the VBA method compared to standard ML training. Verification error was reduced by almost 8%, compared to a baseline system with standard ML training for the UBM.
منابع مشابه
Speaker Verification Using Adapted Gaussian Mixture Models
In this paper we describe the major elements of MIT Lincoln Laboratory’s Gaussian mixture model (GMM)-based speaker verification system used successfully in several NIST Speaker Recognition Evaluations (SREs). The system is built around the likelihood ratio test for verification, using simple but effective GMMs for likelihood functions, a universal background model (UBM) for alternative speaker...
متن کاملInternational Journal of Emerging trends in Engineering and Development ISSN 2249-6149 Available online on http://www.rspublication.com/ijeted/ijeted_index.htm Issue 2, Vol.5 (July 2012)
In This paper presents an overview of a state-of-the-art text-independent speaker verification system. First, an introduction proposes a modular scheme of the training and test phases of a speaker verification system. Then, the most commonly speech parameterization used in speaker verification, namely, cepstral analysis, is detailed. Gaussian mixture modeling, which is the speaker modeling tech...
متن کاملDiscriminative adaptation for speaker verification
Speaker verification is a binary classification task to determine whether a claimed speaker uttered a phrase. Current approaches to speaker verification tasks typically involve adapting a general speaker Universal Background Model (UBM), normally a Gaussian Mixture Model (GMM), to model a particular speaker. Verification is then performed by comparing the likelihoods from the speaker model to t...
متن کاملText Independent Speaker Modeling and Identification Based On MFCC Features
In this gives an overview of automatic speaker recognition technology, with an emphasis on textindependent recognition. Speaker recognition has been studied actively for several decades. We give an overview of both the classical and the state-of-the-art methods. We start with the fundamentals of automatic speaker recognition, concerning feature extraction and speaker modeling. Here, describe a ...
متن کاملA Review on Text-Independent Speaker Verification Techniques in Realistic World
This paper presents a review of various speaker verification approaches in realistic world, and explore a combinational approach between Gaussian Mixture Model (GMM) and Support Vector Machine (SVM) as well as Gaussian Mixture Model (GMM) and Universal Background Model (UBM).
متن کامل